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In this paper the application of embedding space and fractal dimension
estimation to monitor the condition of a system with clearance is considered by
examining the e!ect on the correlation dimension of variations of the gap clearance
in a bearing system. The model analysed represents an elastically supported rotor
and stator, subject to excitation by an imbalance, which is restricted to
two-dimensional linear movement perpendicular to the axis of rotation. From
full-phase space calculations it is found that as the clearance between the rotor and
stator is increased, there is a discernible decrease in the value of the correlation
dimension. Thus, it may be feasible to determine changing events such as gap
clearance by monitoring the correlation dimension of the system. Employing the
conventional method of delays results in substandard estimates for the correlation
dimension. However, modifying the method of delays by incorporating values from
an additional observable into the vectors used for reconstructing the phase space
produce results in accordance with those from the full-phase space.
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1. INTRODUCTION

Condition monitoring, or machine health monitoring, is the extraction of machine
vibration data, machine performance data and/or other relevant information from
plant or machinery whilst in operation, with the objective of identifying the initial
indications of component failure. Once detected, pre-failure damage can then be
located and treated accordingly to avoid an all-out breakdown of the machinery,
making considerable savings possible both "nancially and in machine downtime.
Traditionally, the method used for such monitoring processes involve analyses in
the time and frequency domains, covering signal processing and Fourier analysis
techniques respectively. More recently, more sophisticated tools such as neural
networks and wavelet techniques have been employed. In general, plant or
machinery will have non-linear components which contribute to the dynamics of
the entire system and which may, under certain conditions, produce chaotic
vibrations. In such circumstances, chaos techniques may present alternative
methods for the condition monitoring of such equipment. The work reported in this
paper explores this idea through the investigation of the use of the correlation
dimension for the condition monitoring of systems with clearance.
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It has already been ascertained that dissipative dynamical systems which exhibit
chaotic behaviour often have an attractor in phase space which is termed as
&&strange''. These so-called &&strange attractors'' have been found to be non-periodic
and unpredictable over long time scales due to the system's sensitive dependence on
its initial conditions. For this reason chaotic dynamics have been found to be most
easily understood when viewed from a phase-space perspective [1}3]. Systems with
clearance can, under speci"c circumstances, experience chaotic motion and
therefore may also have a &&strange attractor'' in phase space. As most experimental
situations or condition monitoring programmes will yield data for only some of the
observables which contribute to the dynamics of the system, the actual phase space
of the system cannot be obtained. However, by using the method of delays, the
system's phase-space attractor can be reconstructed from the knowledge of as little
as one of the observable of the system [4]. In this pseudo-phase space or indeed the
actual-phase space, analytical techniques such as Lyapunov exponents and fractal
dimensions can be applied in an e!ort to predict the system's behaviour with time.

The calculation of fractal dimensions from the pseudo-phase space (also known
as embedding space) has been comprehensively studied by Grassberger and
Procaccia [5]. Sauer and Yorke [6] have furthered this study by researching the
minimum number of delay co-ordinates required to give a faithful representation of
the full-phase-space attractor, while the practical problems associated with the
dimension computations have also considered in two papers by Ding et al. [7, 8]. In
a more recent paper by Jedynak et al. [9], the failure of dimensionality calculations
in the pseudo-phase space due to the application of the method beyond its intrinsic
limitations is discussed.

The following paper considers the application of embedding space and
correlation dimension estimation to monitor the condition of a system with
clearance, as the gap clearance is varied. It will be shown that because the coupling
to the non-linearity is more dominant in the x direction, inexact reconstructions of
the phase spaces can arise when using the y direction motion for the
reconstructions in this type of system. This becomes more apparent in the results
obtained for the correlation dimension as the gap clearance is increased, due to the
weakening of the coupling between the two motions. Problems with phase-space
reconstructions for discontinuous systems have previously been documented in
a paper by Feeny and Liang [10]. Reconstruction failure in that case was attributed
to non-smooth processes associated with systems exhibiting stick}slip dynamics.
Successful reconstructions were achieved by the addition of an extra observable in
the delay vectors when reconstructing the phase spaces. In this paper similar
technique are presented to show the improvement in the quality of the embedding.

2. REVIEW OF DYNAMIC MODEL

2.1. MODEL DESCRIPTION

The model used for the subsequent analysis is shown in Figure 1. It is similar to
that which has been analyzed both numerically and experimentally prior to the
work researched here but, in addition, includes the e!ect of friction between the



Figure 1. Dynamic model of the rig.
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rotor and stator during sliding contact [11]. The model represents an elastically
supported rotor, subject to excitation by imbalance, which is restricted to
two-dimensional motion in a plane perpendicular to the axis of rotation. The mass
eccentricity of the rotor is de"ned as o, and the mass is free to vibrate inside a gap
clearance d

r
. Once the rotor has traversed this gap clearance, which could be

representative of a clearing e!ect such as a bearing or a malfunctioning squeeze "lm
bearing, contract is made with the elastically supported ring, which is modelled as
having zero mass. The sti!ness ratio of the ring support relative to the rotor
support is approximately 30 :1, and d

1
and d

2
allow the rotor to be o!set within the

clearance to model gravity or other e!ects. The inherent damping in the rotor
system and the additional damping arising from contact between the rotor housing
and the ring support are represented by c

1
and c

2
respectively.

2.2. EQUATIONS OF MOTION

The equations of motion for the above system are presented below. For the case
where there is no contact between the rotor and housing, the motion is governed by
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All model simulations were run at shaft speeds of either 1260 or 2340 r.p.m. with
the following parameter values; m"8)9 kg, k

1
"79 kN/m, k

2
"2345 kN/m,

l
1
"0)089, l

2
"0)001, o"60)6]10~6 m, and k"0)04, with d

1
"d

r
"0)003,

0)005 or 0)00075 m for the three di!erent gap clearances to be analyzed and d
2
"0.

2.3. NUMERICAL INTEGRATION

The numerical techniques used to integrate the equations of motion are based on
the classical forth order Runge}Kutta algorithm. As the equations of motion
change abruptly when the clearance is traversed and contact is made with the
secondary spring, care is required in the application of numerical integration
techniques if a converged solution is to be obtained. Arbitrary application of a "xed
time step fourth order Runge}Kutta algorithm to non-smooth and discontinous
systems has been shown to result in solutions which lose convergence after the "rst
discontinuity [12]. To obviate this problem, the algorithms used to produce the
data for this study incorporate routines to track the displacements and to locate
accurately in time when the contact with the secondary spring was made or broken.
This ensures that the convergence of the solution is retained. A hierarchy of
three interpolation subroutines from quadratic to linear and "nally to bisection
was used to detect the points of transition. In well-conditioned cases, a number
of applications of the quadratic routine was used to give the contact point
to a known spatial tolerance. In badly conditioned cases, linear interpolation
was used and in the case of &&grazing'' type contact recourse was made to
the bisection algorithm. Further details of the algorithm may be found in references
[13, 14].
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3. FRACTAL DIMENSION

3.1. CORRELATION DIMENSION ESTIMATION

Strange attractors are typically characterised by fractal dimensionality, of which
the correlation dimension is the most readily computed with rapid convergence. It
has also been found to give a more relevant measure of the strangeness, as it is
sensitive to the dynamical process of coverage of the phase space since it takes into
account the frequency with which trajectories visit di!erent regions of the attractor
[15]. The correlation dimension [4] is obtained by "rstly considering correlations
between points taken from a long time series on the attractor to compute what is
known as the correlation function. A sphere (or cube) of radius (or length) r is
placed at each point x

i
on the attractor and the number of points falling within each

sphere is summed, that is,
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where H(s) is the Heaviside function. H(s)"1 if s'0 and H (s)"0 if s(0; s being
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The function C (r) has been found to behave as a power law [4], which is
dependent on r as rP0; that is,

C(r)"0(rl). (6)

The correlation dimension, commonly denoted by D
2

is then l and can be de"ned
by using the slope of the log C versus log r curve:
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3.2. ACTUAL CORRELATION DIMENSION

The rotor system illustrated in Figure 1 has been extensively studied both
experimentally and numerically [12]. As all of the observables which contribute to
the dynamics of the system are known from previous analyses, the correlation
dimension can be calculated directly from the full-phase-space attractor. The
contributing observables are the x and y direction motions and velocities together
with the phase angle from the excitation force. To investigate the e!ect that
changing the magnitude of clearance has on the correlation dimension, the system
was analysed running at two distinct shaft speeds and was considered for the cases
of the clearance being 0)3, 0)5, and 0)75 mm. Table 1 presents the results for the
correlation dimensions computed for each of these three di!erent cases for the
system running at the two chosen shaft speeds of 1260 and 2340 r.p.m. Examination
of these results clearly shows that for both the shaft speeds analysed, as the
clearance is increased, there is a noticeable drop in the magnitude of the correlation
dimension. Hence, it should be viable to determine changes in the clearance
through monitoring the correlation dimension associated with the system.



TABLE 1

Correlation dimension values computed from the full-phase space, for the rotor system
illustrated in Figure 1

Gap Points in the phase space Estimated correlation dimension
clearance

(mm) 1260 r.p.m. 2340 r.p.m.

0)3 20 000 4)1968 2)7356
0)5 20 000 3)8119 2)5286
0)75 20 000 3)1800 2)2309
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3.3. RESULTS OF EMBEDDING FOR 2-d.o.f. ROTOR

As was noted in section 3.1, for the rotor system investigated, all observables
contributing to the dynamics of the system were known from previous analyses. In
experimental set-ups, or monitoring programmes, however, this in-depth
knowledge will not be known, and generally, data from only one state variable may
be available or readily recorded. To compensate for this, as little as one observable
can be used to reconstruct the phase space by applying a technique known as the
method of delays [4]. Reconsidering the same three cases that were used to
construct the full-phase space, attempts were made to see if a reliable estimate of the
correlation dimension could be determined from the pseudo-phase space. The
system was again analysed at the two shaft speeds of 1260 and 2340 r.p.m. Data sets
of 20 000 points were used for the analysis, with the length of time delay used in the
reconstruction vectors being equivalent to one-quarter of the forcing period of
the system. This was determined by locating the "rst zero crossing when the
autocorrelation function is applied to the system [9]. Both the x and y direction
motions were considered separately for reconstructing the phase-space attractors,
and the correlation dimension was calculated for embedding dimensions ranging
from 3 to 12, the embedding dimension being the dimension of the reconstructed
phase space. For example, an embedding dimension of 5 will reconstruct the
attractor in a "ve dimensional pseudo-phase space. It was not thought worthwhile
to consider an embedding space of smaller dimension as the rotor system being
analysed requires two degrees of freedom, i.e., a "ve-dimensional phase space to
describe it. Figures 2 and 3 illustrate the behaviour of the correlation dimension in
the x and y directions, respectively, with increasing pseudo-phase-space dimension
for the lower of the two shaft speeds analysed, i.e., 1260 r.p.m. Examining Figures
2 and 3, it can be seen that a saturated value is obtained for the correlation
dimension from both the x and y direction motions in all the three cases analysed.
The approximate values obtained for the saturated correlation dimensions at both
the shaft speeds analysed are summarized in Table 2. On closer inspection,
however, and comparing these values to the values obtained for the correlation
dimension from the full phase spaces (Table 1), it can be seen that although a very
reasonable estimate for the correlation dimension is obtained in all three cases at



TABLE 2

Saturated values for the correlation dimension computed from the pseudo-phase space
using the standard method of delays for the rotor system illustrated in Figure 1

Gap clearance: Estimated correlation Gap clearance: Estimated correlation
x direction dimension y direction dimension

(mm) (mm)
1260 r.p.m. 2340 r.p.m. 1260 r.p.m. 2340 r.p.m.

0)3 4)4042 2)7102 0)3 4)4358 2)7187
0)5 3)7812 2)5240 0)5 3)4024 2)3191
0)75 3)3751 2)2138 0)75 2)8894 1)9279
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both shaft speeds for the x direction motion, this is true only in the 0)3 mm case for
the y direction motion. For the y direction motion in the 0)5 and the 0)75 mm cases,
the saturated values obtained for the correlation dimension are considerably
smaller than those obtained form the x direction motion with the di!erence
appearing to increase progressively as the clearance is increased.

It is clear from this that some problem occurs during the phase-space
reconstructions from the y direction motions in the 0)5 and the 0)75 mm cases,
producing poor-quality reconstructed &&attractors'' and consequently, failure of the
dimensionality calculations. It is thought that this may be the consequence of
variations in the strength of the coupling between the x and y direction motions. As
mentioned previously, the coupling between the x and y direction motions and the
non-linearity is more dominant in the x direction motion. This is a consequence of
d
1
"d

r
and d

2
"0. As the clearance is increased, the coupling becomes

progressively weaker in the y direction. Furthermore, with the coupling becoming
prominently weaker in the y direction, less information is available about the
x direction motion from the y direction motion, resulting in substandard
reconstructions. The x direction reconstructions, however, are not notably a!ected
by the increase in the clearance, due to the coupling having greater in#uence
through this motion. Therefore, even with weaker coupling between the motions
and the non-linearity, su$cient information about the y direction motion still exists
to provide reliable reconstructions.

In the literature concerning the calculation of the correlation dimension from an
embedding space, a number of di!erent algorithms exist to aid in deciding how
many dimensions are required for constructing the pseudo-phase space to give
a faithful representation of the actual phase-space attractor. It has been shown
[16], that for a one-to-one correspondence from the original phase space to the
embedding space, m"2N#1 dimensions are required, where m is the
dimensionality of the pseudo-phase space and N is the dimension of the space in
which the original attractor lies. However, it has also been conjectured [6] that for
the case of the correlation dimension, the dimension is preserved for m'D

2
dimensions, where D

2
is the correlation dimension, even though the one-to-one

property may not be satis"ed. Re-examining Figures 2 and 3, it is clear that



Figure 2. Correlation dimension versus embedding dimension: x direction motion: #,
0)3 mm!x; ), 0)5 mm!x; *, 0)75 mm!x.

Figure 3. Correlation dimension versus embedding dimension: y direction motion: #,
0)3 mm!y; ), 0)5 mm!y; *, 0)75 mm!y.
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a saturated value is not obtained until an embedding space of at least 6 or more
dimensions is reached. This may, however, be improved by using much greater data
sets for the calculation of the correlation dimension, to the detriment of
computation time.
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3.4. FURTHER ANALYSIS

As was mentioned earlier, work carried out on systems containing stick}slip
dynamics [10] experienced problems when reconstructing the phase-space
attractors using the method of delays. In order to make the reconstructions &true''
embeddings, an additional observable (namely, the phase of the excitation in that
case) was incorporated into the delays for the reconstructions. If the full-phase
space is considered to be the extreme at one end of a spectrum with the
pseudo-phase space being the extreme at the opposite end of the spectrum, it can be
reasoned that varying combinations of embedding spaces using more than just
purely one observable pertaining to the system will generate a form of
pseudo-phase space somewhere between the two extremes. Furthermore, if the pure
form of pseudo-phase space is in some way not completely representative of the
full-phase space of the system, then some combinations between the two extremes
may prove to produce more adequate representative embedding spaces. Hence, on
incorporating a supplementary observable into the delay measurements, enough
information about the other motion may now be available for constructing
good-quality attractors, as this would bring the reconstructions marginally closer
to that of the full-phase-space attractors.

In order to modify the embeddings described in section 3.3 to determine the e!ect
this will have on the calculations of the correlation dimension in the three cases
considered above, incorporation of a y value was included in the x direction
reconstruction and vice versa for the y direction motions. For example, considering
a four dimensional embedding in the x-direction, for the general case the
m-dimensional embedding vector would be as follows:

x
m
"Mx(t), x(t#mq), x (t#(m#1)q), x(t#(m#2)q)N, (8)

where m"1, 2, 3... . To incorporate an additional observable equation (8) would
become

x
m
"Mx(t), x (t#mq), x (t#(m#1)q), y(t)N. (9)

When this technique was applied to the system considered in section 3.3, very little
change, if any at all, occurred in the values obtained for the x direction motion
compared to those presented in Table 2. However, in the y direction, signi"cant
increases were experienced in the dimensional values from the y direction motion.
Unfortunately, these new results were still discernibly lower than the values
obtained from the x direction motion. The next obvious step was to incorporate
two values from the additional observable into the delay co-ordinates. Applying
this, equation (9) for a four-dimensional space then becomes

x
m
"Mx(t), x (t#mq), y(t), y(t#mq)N. (10)

Re-analysing the same three cases previously considered, a very desirable
outcome was achieved. Not only were the values obtained for the correlation
dimensions from the x direction motions of greater accuracy when compared to the
values from the full-phase space, but the y direction results were now also of the



Figure 4. Correlation dimension versus embedding dimension: predominantly x direction: #,
0)3 mm!xy; ), 0)5 mm!xy; *, 0)75 mm!xy.

Figure 5. Correlation dimension versus embedding dimension: predominantly y direction: #,
0)3 mm!yx; ), 0)5 mm!yx; *, 0)75 mm!yx.
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same magnitude as the x direction motions and similar to the full-phase space
results. Examples of the results obtained at the lower shaft speed of 1260 r.p.m.
acquired from the x and y direction reconstructions are presented in Figures 4 and
5 respectively when two values from an additional observable are introduced into
the delay vectors. As can be seen from Figure 4 and 5, the introduction of two



TABLE 3

Saturated values for the correlation dimension computed from the pseudo-phase space
using the modi,ed method of delays for the rotor system illustrated in Figure 1

Gap clearance: Estimated correlation Gap clearance: Estimated correlation
Predominantly dimension Predominantly dimension

x direction (mm) y direction (mm)
1260 r.p.m. 2340 r.p.m. 1260 r.p.m. 2340 r.p.m.

0)3 4)2939 2)7693 0)3 4)2882 2)7660
0)5 3)8756 2)5646 0)5 3)8064 2)5631
0)75 3)3843 2)2427 0)75 3)3800 2)2415
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values from an additional observable into the delay vectors for the reconstructions
has marginally improved the quality of the reconstructed &&attractors'' from the
x direction motion, with the improvement being much more signi"cant for the
y direction reconstructions. Therefore, applying this technique results in better
estimates of the correlation dimension compared to those of the full-phase spaces
(Table 1) from both the predominantly x and y direction reconstructions. This can
be seen more clearly by referring to the approximate saturated values for the
correlation dimension presented in Table 3.

It should be noted that this modi"ed technique does not discernibly e!ect the
embedding dimensions at which saturation of the correlation dimension occurs. As
was mentioned earlier, it is thought that the process of dimension estimation may
be signi"cantly improved by using considerably larger data sets. Consequently, this
may also enhance saturation of the correlation dimension within the scope of any of
the algorithms conjectured for calculating the minimum embedding dimensions
required for faithful reconstructions.

3.5. FALSE NEAREST-NEIGHBOUR TESTS

To assess the legitimacy of the &&attractors'' constructed for the rotor system of
Figure 1, false nearest-neighbour tests [17], were applied to all of the reconstructed
attractors analysed in sections 3.3 and 3.4. False nearest-neighbour tests are
primarily used to determine the embedding dimension required to obtain a &&true''
embedding. &&True'' in this sense means that all pseudo-phase-space points in the
reconstructed attractor are genuine neighbours to each other. If an &&attractor'' is
reconstructed using too small an embedding dimension, the &&attractor'' will cross
over itself, and will only unfold with increasing embedding dimension. Thus, if
a pseudo-phase space point's nearest neighbour in the smaller embedding
dimension becomes remote in the larger embedding dimension it will be regarded
as being a false neighbour. The appropriate embedding dimension is achieved when
the dimension where no false nearest neighbours are present is reached.

Figure 6 shows the typical characteristic obtained on applying the false
nearest-neighbour tests to both the straight embeddings of the rotor system and



Figure 6. False nearest-neighbour percentage versus embedding dimension for the 0)75 mm
y direction embedding.
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also the modi"ed embeddings. All of the tests showed that the reconstructions were
&&true'' in the sense that by roughly seven dimensions, the &&attractors'' were fully
unfolded, containing only points that were genuine neighbours to each other.
However, in the case of the &&attractors'' reconstructed from the 0)5 and the 0)75 mm
y direction gap clearances, it is suggested from the failure of the correlation
dimension calculations that for these cases the &&attractors'' were not &&true'' in the
sense that they did not represent the system's proper motion. A &&true'' attractor, in
both the false nearest-neighbour sense and representative of the system's proper
motion, was only obtained when the &&attractors'' were reconstructed using the
modi"ed embedding technique. Although, as this work has shown, false
nearest-neighbour test can be successfully applied to determine the number of
embedding dimensions required to give &&true'' embeddings in the sense that the
attractor is fully unfolded, it has been highlighted that additional analysis tools
should also be applied in order to be con"dent that the &&attractor'' is representative
of the true attractor, constructed from the full-phase space.

3.6. RESULTS FOR S-d.o.f. SYSTEM

In order to discern how the application of embedding space to compute the
correlation dimension for a simple system compares to that of the more complex
system of Figure 1 a single-degree-of-freedom system was also analysed in the same
way as the rotor system of Figure 1. For this analysis the system was run at the
lower of the two shaft speeds for which the two-degree-freedom rotor system was
considered.



Figure 7. Correlation dimension versus embedding dimension S-d.o.f. system.
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The correlation dimension was, as before, computed "rst from the full-phase
space, and then from the pseudo-phase space. The value obtained for the
correlation dimension from the phase space was approximately 1)6044. The results
obtained from the pseudo-phase space, for a range of embedding dimensions from
1 through to 9, are presented in Figure 7. On examining Figure 7, it can be seen that
a saturated value for the correlation dimension (1)605) occurs by as little as
5 embedding dimensions with this value being a very good estimate to that
obtained from the full-phase space. Hence, arbitrary application of embedding
space to a system of this type proceeds with no problems, unlike the previous
systems. This tends to con"rm that the primary problems in the case of the rotor
system is not one of non-smoothness, but rather the e!ect of coupling between the
motion and the non-linearity.

3.7. DISCUSSION

On comparing the applicability of embedding space to both the
single-degree-of-freedom system and the rotor system, it can be seen that for the
single-degree-of-freedom system, arbitrary application of this method would be
acceptable as no problems arise with the reconstructions. Any calculation carried
out in this pseudo-phase space would, therefore, give reliable results. For the rotor
system, however, problems can occur with the reconstructions (due to the decrease
in strength of the coupling between the non-linearity and the x and y direction
motions as the gap clearance is increased) making them topologically dissimilar to
those of the real phase space. Therefore, direct application of embedding space in
this case may result in incorrect calculation of the correlation dimension from the
pseudo-phase space. In the case of this study, in order to modify the reconstructions
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so that they are topologically similar, an additional observable has to be
incorporated into the delay measurement vectors used to create the embedding
space.

Unfortunately, in practice, the applicability of embedding space to a system will
not be known a priori and therefore su$cient care and caution must be taken when
reconstructing a system's attractor in order to calculate any properties of the
system. As mentioned in section 3.5, the use of false nearest-neighbour tests will give
some guidance as to whether problems may arise with the reconstructions and
hence a better knowledge as to the applicability of embedding space may be
determined from such tests.

In this study, the model assumes a sti!ness ratio of approximately 30 :1 between
the rotor support relative to the ring support. For this sti!ness ratio a variety of
shaft speeds was available at which the system could exhibit chaotic motion. If, for
this system, this ratio was to be decreased, it would become progressively more
di$cult for the system to exhibit this kind of motion and instead the system would
tend to display either periodic or quasi-period motion, irrespective of the clearance
or the shaft speed. The resulting value of the correlation dimension would always
be either 1 or 2 respectively. Hence, this sti!ness ratio was chosen to produce the
desired e!ect of the system exhibiting chaotic motion, so that as the clearance was
altered the system could be analysed to determine if a trend existed between
changes in clearance and the correlation dimension of the system.

The system considered in this paper represents a non-linear rotor stator system
with somewhat exaggerated magnitudes of clearances. From scaling
considerations, it has been shown that dynamically similar responses can be elicited
at similar values of o/d

r
if all other system parameters are held "xed [18]. It should

therefore be possible to detect smaller changes in clearance with a smaller level of
imbalance exciting the system, which would be more characteristic of, for example,
the behaviour exhibited in worn bearings from a real motor set-up.

4. CONCLUSIONS

The work reported in this paper examines the use of the correlation dimension in
condition monitoring of systems with clearance in order to determine whether the
use of chaos techniques could provide an alternative route in the machine health
monitoring of plant or machinery. As the system considered for this analysis has
previously been analysed [11], all observables contributing to the dynamics of the
system were known in advance; therefore, calculations could be performed in the
full-phase space of the system. In order to accomplish this, the system was
considered for three di!erent magnitudes of clearance at two distinct shaft speeds.
On constructing the phase space for each case and computing the correlation
dimension from these phase spaces, it was discovered that as the clearance was
increased, there was a discernible decrease in the value of the correlation dimension
for the system. This trend was observed at both the shaft speeds analysed. Hence, it
may be possible to determine changing events such as gap clearances through
monitoring the correlation dimension of the system.
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Practically, however, the method of delays [4] has to be employed to reconstruct
most system's attractors. In this case, when embedding space was applied to the
same three cases considered for the full-phase-space reconstructions, faithful
reconstructions were obtained using the x direction observable alone. However,
substandard &&attractors'' resulted when using purely the y direction observable. It
was reasoned that this may have been due to the weakening of the coupling
between the two motions as the gap clearance was increased resulting in loss of
information about the x direction motion in the y direction motion. In order to
improve the quality of the unacceptable reconstructions, the method of delays was
modi"ed to incorporate values from an additional observable In this study, it was
found that two values from an additional observable were required in order to give
&&true'' embeddings so that accurate estimates could be obtained from the
&&attractors''.

It is evident that it may be feasible to use the correlation dimension in the
condition monitoring of systems with clearance. However, reconstructions
resulting form the arbitrary applications of embedding space should be analysed
with caution as inexact &&attractors'' could be a possibility with practical systems.
Further practical-based analysis, however, would be required to determine whether
a trend in the correlation dimension as gap clearance is varied is detectable in more
realistic situations. As condition monitoring schemes usually monitor data relating
to the outer casings of the components which are of interest, it would have to be
established through further analysis whether the techniques described in this paper
could be extended and employed in a manner suited to these conditions imposed in
realistic monitoring set-ups.
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APPENDIX A: NOMENCLATURE

c
1

primary damping coe$cient
c
2

secondary damping coe$cient
C(r) correlation function
D

2
correlation dimension

H( ) Heaviside function
i summation index
j summation index
k
1

primary rotor sti!ness
k
2

secondary rotor sti!ness
m mass of rotor
N number of data points
r radius of the hypersphere
R radial co-ordinate of the rotor
<
Tang

tangent velocity
x co-ordinate of the rotor
y co-ordinate of the rotor
d
1

o!set in the x direction
d
2

o!set in the y direction
d
r

radial clearance
k coe$cient of friction
l power-law index
l
1

primary damping ratio
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l
2

secondary damping ratio
o mass ecentricity
q time delay
u

1
primary natural frequency

u
2

secondary natural frequency
X rotor angular velocity
( ) di!erentiation with respect to time
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